

How to use Facets to categorize FullTextQuery results

www.thoughts-on-java.org

Facetting is another interesting feature provided by Hibernate
Search. It allows you to group your FullTextQuery results in
categories. You often see this in online shops which present the
search results in different product categories or on websites which
categorize their articles by date.

Prepare your entities for a faceted search
Before you can define a faceted search query, you need to prepare
your search index for it. You can do that by annotating the entity
attribute you want to use for faceting with a @Facet annotation.

@Indexed

@Entity

public class Tweet {

 @Column

 @Field(analyze = Analyze.NO)

 @Facet

 private String userName;

 ...

}

http://www.thoughts-on-java.org/

How to use Facets to categorize FullTextQuery results

www.thoughts-on-java.org

Get faceted results
In the first step, you need to create a FullTextQuery for which you to
get faceted results. I explained this part in more details in the first
post of this series. The FullTextQuery in this example selects all
Tweet entities from the Lucene index.

EntityManager em = emf.createEntityManager();

em.getTransaction().begin();

FullTextEntityManager fullTextEm =

Search.getFullTextEntityManager(em);

QueryBuilder tweetQb =

fullTextEm.getSearchFactory().buildQueryBuilder().forEntity(

Tweet.class).get();

Query tweetQuery = tweetQb.all().createQuery();

FullTextQuery fullTextQuery =

fullTextEm.createFullTextQuery(tweetQuery, Tweet.class);

http://www.thoughts-on-java.org/
http://www.thoughts-on-java.org/add-full-text-search-application-hibernate-search/
http://www.thoughts-on-java.org/add-full-text-search-application-hibernate-search/

How to use Facets to categorize FullTextQuery results

www.thoughts-on-java.org

You can then use this query to with a FacetingRequest to get the
different facets and their number of elements.

FacetingRequest postedAtFR = tweetQb.facet()

 .name("userNameFR")

 .onField(Tweet_.userName.getName())

 .discrete()

 .orderedBy(FacetSortOrder.COUNT_DESC)

 .includeZeroCounts(false)

 .maxFacetCount(3)

 .createFacetingRequest();

FacetManager facetMgr = fullTextQuery.getFacetManager();

facetMgr.enableFaceting(postedAtFR);

List<Facet> facets = facetMgr.getFacets("userNameFR");

http://www.thoughts-on-java.org/

How to use Facets to categorize FullTextQuery results

www.thoughts-on-java.org

Use a Facet in your query
Getting the facets of a query result and showing them in the UI is good
first step. But what happens if you a user selects one of the facets and
wants to see the matching query results?

You obviously need to use the selected facet in your query. You can do
that based on the facets you selected in the previous example.

// create a FullTextQuery and select Facets

// as shown in previous code snippets

FacetSelection facetSelection = facetMgr.getFacetGroup(

"userNameFR");

facetSelection.selectFacets(facets.get(0));

List<Tweet> tweets = fullTextQuery.getResultList();

for (Tweet t : tweets) {

 log.info(t);

}

http://www.thoughts-on-java.org/

